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Abstract

In this paper, the method of center manifold reduction is applied to the limit cycle calculations of a three-dimensional

thin airfoil placed in an incompressible flow. Limit cycle oscillations are caused by a cubic structural restoring force

corresponding to the aileron rotation. The equation of motion is written as an integro-differential equation and also as

an approximate set of ordinary differential equations. Two different implementations of the method of center manifold

reduction for these two cases are briefly outlined. It is emphasized, that the formal power series expansions used in the

method of center manifold reduction typically diverge and cause the method not to give satisfactory results. An example

is presented, when the method of center manifold reduction cannot even qualitatively predict the occurrence of a stable

limit cycle of a small amplitude.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The method of center manifold reduction was developed in recent decades as a tool for investigation of bifurcations

in nonlinear dynamical systems. Such systems arise during modelling a physical system in the form of equations of

motion. The most important bifurcation takes place when the steady solution of these equations loses its stability (for

example, as a result of a change of the velocity) and a new solution appears (e.g. limit cycle oscillations). The well-

known example of such a phenomenon is an aircraft flutter instability known as the Hopf bifurcation (Hassard et al.,

1981). The center manifold itself is a certain low-dimensional subspace of the phase space, smooth enough to be called a

manifold, containing all asymptotic solutions (trajectories). The center manifold is so important because it has

attracting properties, which means that all trajectories with initial conditions lying sufficiently close to this manifold

tend to it asymptotically with time. The center manifold is also invariant; in what follows all trajectories with initial

conditions placed in this manifold remain in it all the time. Therefore, if only asymptotic solutions of equations of

motion are of interest, it is convenient to consider only the low-dimensional center manifold instead of the entire phase

space. The procedure of obtaining a low-dimensional system of equations of motion on the center manifold from initial

multi-dimensional system is called center manifold reduction. In the case of the Hopf bifurcation, the corresponding

center manifold is two-dimensional and the limit cycle oscillations are described by only two ordinary differential

equations.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a1; a2; e1; e2 Jones’ function parameters (Eq. (18))

b semi-chord (Fig. 1)

Fh;Fa;Fb spring restoring force and moments per

unit length

h plunge displacement

Ch;Ca;Cb spring stiffness constants per unit

length

cb nonlinear spring coefficient (Eq. (1))

Ia; Ib moments of inertia per unit length of wing-

aileron (relative to xa) and aileron (relative

to xc), respectively

Ma mass of wing-aileron per unit length

Mw mass of wing-aileron-support per unit length

ra ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ia=Mab2

q
nondimensional radius of gyration

rb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ib=Mab2

q
nondimensional radius of gyration

of aileron

Sa;Sb static moments per unit length of wing-

aileron (relative to xa) and aileron (relative

to xc), respectively

U flow velocity

U0 linear flutter velocity (bifurcation point)

u ¼ U � U0 bifurcation parameter

xa nondimensional location of elastic axis

(Fig. 1)

xc nondimensional location of aileron hinge

line (Fig. 1)

xa ¼ Sa=Mab nondimensional distance from the

elastic axis to the center of gravity of the

wing-aileron

xb ¼ Sb=Mab nondimensional distance from the

hinge line to the center of gravity of the

aileron

a pitch angle (Fig. 1)

b aileron rotation angle (Fig. 1)

r air density

r̂ ¼ rb4

oh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch=Mw

p
uncoupled natural frequency of

plunging motion

oa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Ca=Ia

p
uncoupled natural frequency of pitch-

ing motion

ob ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Cb=Ib

p
uncoupled natural frequency of tor-

sional vibration of the aileron around hinge

line

zh; za; zb damping coefficients corresponding to phy-

sical degrees of freedom

u; q vectors of physical and modal coordinates,

respectively
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Essentially, the method of center manifold reduction consists of the nonlinear transformations of coordinates which

in turn are given in the form of formal power series expansions. At present, this is the only known way of solving the

problem effectively, and also the source of certain limitations of application of the center manifold in practice. This is

because such series expansions typically diverge and can be used only up to some finite order (Chow and Hale, 1982).

The aim of this work is to show examples of aeroelastic systems for which the method of center manifold reduction does

not give satisfactory results. These are two- and three-dimensional thin airfoils with special values of parameters. It

seems that until new implementation of this method is developed, probably not using formal series expansions, the

method of center manifold reduction cannot be an effective and general tool for determining limit cycle oscillations in

aeroelastic systems. Nevertheless, the method itself is very attractive: it does not require any simplifying assumptions

and gives a low-dimensional system of equations off motion directly for asymptotic solutions, without numerical

integration in time (which is practically impossible to carry out in the case of multi-dimensional space of initial

conditions).

The center manifold entered subsonic aeroelasticity in the last decade as the method of handling only structural

nonlinearities, so far [see Grzędziński (1993a,b, 1994, 1995, 1997, 1999), also Dessi et al. (1999), Liu et al. (1999), Lewis

(1995), and others dealing with approximate systems of ordinary differential equations]. A more detailed review of

other methods used recently for investigation of nonlinear flutter equation of an airfoil not only with structural

nonlinearities is given by Lee et al. (1999). The greatest expectation from center manifold theory was the possibility to

calculate limit cycle oscillations without simplifying the unsteady aerodynamics and also without assuming harmonic

motion, required in the commonly used harmonic balance analysis, for instance. It is worth noting here that the

subsonic nonlinear flutter equation describing the limit cycle oscillations is always of the form of an integro-differen-

tial equation, due to the time-history of the unsteady aerodynamic forces. The integro-differential aerodynamic

operator itself is linear, but causes some difficulties in nonlinear stability analysis—especially in the time domain—due

to the infinite dimension of the corresponding phase space (Hale, 1977). A more general nonlinear form of such an

operator including the transonic regime is not known yet (although works on this subject are in progress for many

years), so the present work relates only to those aeroelastic systems with structural nonlinearities and linear

aerodynamic forces.
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In order to evaluate limit cycle oscillation given by the center manifold reduction, any other exact method is

necessary for comparison. Unfortunately, there is neither analytical nor general numerical method for solving integro-

differential equations, and every numerical method is problem dependent. Moreover, often some additional simplifying

assumptions are needed to ensure the computation time is not excessive, as pointed out by Lee and Leblanc (1986).

Therefore, since the development of a new numerical method is not the goal of this work, an indirect method has been

used for comparison, based on the approximate flutter equation. There exist many approximate models of aeroelastic

systems [e.g. Edwards et al. (1979)] which involve rational approximations of aerodynamic forces in the frequency

domain and give the equations of motion in the time domain in the form of ordinary differential equations. The

possibility of replacing an integro-differential equation by a system of ordinary differential equations depends on the

form of a corresponding integral kernel function. Exact requirements for such replacement are given, for example, by

Hassard et al. (1981). For ordinary differential equations, there are many numerical tools available, one of them being

well suited for calculation of limit cycle oscillations—the continuation and bifurcation software AUTO97 developed by

Doedel et al. (1998). The results of the amplitude, frequency and the time history of limit cycle oscillations given by this

method applied to the approximate flutter equation will be compared with those of the center manifold reduction.

The application of center manifold theory to an aeroelastic system of N degrees of freedom depends on whether the

corresponding equation of motion is of the form of an integro-differential equation or of the form of a system of

ordinary differential equations. For the integro-differential equation, the procedure of center manifold reduction

contains the following steps:
(i)
 formulation of the problem in terms of a system of 2N nonlinear integro-differential equations of the first order

instead of a system of N equations of the second order—this is requirement of methods of bifurcation theory

worked out for such equations;
(ii)
 identification of bifurcation point (i.e. linear flutter velocity U ¼ U0)—this is done by solving the fully linearized

flutter equation;
(iii)
 increasing the number of generalized coordinates by one by adding the difference of velocity u ¼ U � U0 as a new

variable and also increasing the number of equations to 2N þ 1 by introducing a new equation du=dt ¼ 0—this is

done in order to work on interval in velocity space in the vicinity of bifurcation point (otherwise the center

manifold exists only for one value of the velocity, U ¼ U0, and vanishes if UaU0);
(iv)
 restriction of the aeroelastic system to the appropriate center manifold—this step requires creation of a special

nonlinear transformation of the initial 2N þ 1 dimensional system of integro-differential equations into a two-

dimensional system of ordinary differential equations of the first kind;
(v)
 normalization of the reduced system—this step puts the reduced aeroelastic system into a simpler form by applying

so called near-identity change of coordinates; the simplicity achieved lies in a phase-shift symmetry of resulting

system of equations;
(vi)
 calculation of limit cycle amplitude and frequency for a given velocity—this task, because of the symmetry of the

final equations, is equivalent to finding roots of a polynomial with real coefficients.
The last three steps deal with formal power series expansions of nonlinear terms with respect to generalized coordinates

and, therefore, restrict the analysis to a certain neighborhood of bifurcation point. The area of validity of results and

the proper number of terms of the series have to be estimated numerically for each aeroelastic system separately.

For the system of ordinary differential equations the procedure is simpler, because steps 4 and 5 can be performed

simultaneously by using a single nonlinear transformation of coordinates.

Before the results are presented, a brief description of the center manifold reduction is given, concerning both integro-

differential and ordinary differential equations. A detailed overview of problems related to the above steps of the

algorithm is given by Crawford (1991).
2. Three-dimensional airfoil

The nonlinear aeroelastic system under consideration consists of a three-dimensional thin airfoil with aileron, placed

in a two-dimensional incompressible flow. The geometry of the airfoil is shown in Fig. 1. Such airfoil was already

investigated theoretically and experimentally by Conner et al. (1997), revealing several different types of limit cycle

oscillations caused by aileron freeplay. Unfortunately, freeplay cannot be properly treated by the center manifold

reduction since all nonlinear functions allowed by this method must be of the form of power series. This is the first

limitation of application of the center manifold reduction in aeroelasticity—very restrictive since aileron freeplay is the
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Fig. 2. Restoring moment of aileron rotation.
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Fig. 1. Thin airfoil with aileron.
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most common nonlinear phenomenon in aeroelastic systems (due to wear of the material during normal exploitation).

In the present work, instead of the aileron freeplay the cubic restoring moment Fb has been assumed

Fb ¼ Cbbþ cbb
3, (1)

where Cb ¼ 0, and cb is a constant coefficient. The plot of this function compared to a four-degree freeplay is shown in

Fig. 2. Note that the linear term in Eq. (1) equals zero, in what follows the linearized system has one rigid degree of

freedom (aileron rotation). The remaining springs in the plunge and pitch degree of freedom are assumed linear,

Fh ¼ Chh; Fa ¼ Caa, (2)

where Ch and Ca are known constants.

Displacements of the airfoil during an unsteady motion are described by the three-dimensional vector of physical

coordinates uðtÞ being function of time t:

uðtÞ ¼

hðtÞ

aðtÞ

bðtÞ

8><
>:

9>=
>;. (3)

The flutter equation written in physical coordinates is as follows:

Mu €uðtÞ þ Bu _uðtÞ þ KuuðtÞ þ kuðuÞ ¼ f
ðuÞ
A , (4)

where the mass, damping and stiffness matrices,Mu, Bu and Ku, respectively, are defined in Appendix A, and kuðuÞ is the

nonlinear term generated by Eq. (1).
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For an arbitrary motion, the vector of unsteady aerodynamic forces is given by a convolution integral

f
ðuÞ
A ¼

rU2

2

Z 0

�1

Guð�tÞu t þ
b

U
t

� 
dt, (5)

where the matrix Guð�tÞ is composed of response functions corresponding to the impulsive changes of physical

coordinates. For a thin airfoil in a two-dimensional incompressible flow, these functions can be expressed in terms of

well-known Wagner’s function (Fung, 1955).

In the absence of aerodynamic and damping forces and under the assumption that all springs are linear, the natural

frequencies oj and modes uj ðj ¼ 1; 2; 3Þ can be calculated from the eigenvalue problem

o2
jMuuj ¼ Kuuj . (6)

Note that o3 ¼ 0 because the linear term in Eq. (1) equals zero.

The vector qðtÞ of modal coordinates is defined by the relation

uðtÞ ¼ UqðtÞ, (7)

where the square matrix U is composed of eigenvectors of the eigenproblem given by Eq. (6).

The flutter equation written in modal coordinates is as follows:

€qðtÞ þ Bq _qðtÞ þ KqqðtÞ þ kqðqÞ ¼ f
ðqÞ
A , (8)

where f
ðqÞ
A is the vector of generalized unsteady aerodynamic forces,

f
ðqÞ
A ¼

rU2

2

Z 0

�1

Gqð�tÞq t þ
b

U
t

� 
dt, (9)

the diagonal matrix Kq is composed of squares of eigenfrequencies o2
j , and the remaining matrices are given by

Gqð�tÞ ¼ UTGuð�tÞU, (10)

Bq ¼ UTBuU. (11)

The nonlinear term is written as

kqðqÞ ¼ UT

0

0

cb jð1Þ
3 q1 þ jð2Þ

3 q2 þ jð3Þ
3 q3

� �3

8>><
>>:

9>>=
>>;, (12)

where jðjÞ
i denotes the ith component of the eigenvector uj . Local bifurcation theory of dynamical systems (Chow and

Hale, 1982; Hassard et al., 1981) has been developed for the first-order equations. By introducing a six-dimensional

vector of new coordinates yðtÞ,

yðtÞ ¼
qðtÞ

_qðtÞ

( )
, (13)

the first-order flutter equation is obtained

_yðtÞ ¼ LyyðtÞ þ kyðyÞ, (14)

where the linear integral operator Lyy is

LyyðtÞ ¼ DyyðtÞ þ

Z 0

�1

Gyð�Y;UÞyðt þYÞdY (15)

and square matrices of order 6, Dy, Gy, and the nonlinear term kyðyÞ are given by

Dy ¼
0 I

�Ky �By

" #
,

Gyð�Y;UÞ ¼

0 0

ðrU3=2bÞGq �
U

b
Y

� 
0

2
4

3
5,
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kyðyÞ ¼
0

�kqðqÞ

( )
. (16)

The further analysis consists of the investigation of stability of the steady solution y ¼ 0 of Eq. (14). Two different

methods will be used: direct reduction of the integro-differential equation (14) on the center manifold, as described

by Grzędziński (1993a), and also investigation of the system of ordinary differential equations, obtained in place of

Eq. (14) by using an approximation of the Wagner’s function. Both methods give the limit cycle oscillation in the

neighborhood of each bifurcation point (flutter velocity). For comparison, the set of approximate ordinary differential

equations will be also reduced on the center manifold, in addition to the numerical analysis performed by using the

continuation and bifurcation software AUTO97.
3. Approximate set of ordinary differential equations

For a thin airfoil, the response matrix function Gqð�tÞ can be expressed analytically in terms of the Wagner’s

function fðtÞ. This gives the following expression for the unsteady aerodynamic forces (Fung, 1955) under the

assumption that all terms arising from initial conditions are damped out, and aerodynamic forces do not depend on

time explicitly:

f
ðqÞ
A ¼ � r̂ M̂nc €qþ

U

b
P1 _qþ

U

b

� 2

P0q

 

þ
U

b

� 2

R̂s1

Z t

0

dfððU=bÞtÞ
dt

qðt � tÞdtþ
U

b
R̂s2

Z t

0

d2fððU=bÞtÞ
dt2

qðt � tÞdt

!
, ð17Þ

where r̂ ¼ rb4. The matrices P0 and P1 depend on eigenmodes, geometry of an airfoil, and initial values of the Wagner’s

function, fð0Þ and dfð0Þ=dt, while remaining matrices depend on eigenmodes and geometry of an airfoil.

It is known (Hassard et al., 1981) that, if the matrix function Gqð�tÞ in Eq. (9) satisfies a certain ordinary differential

equation with constant coefficients, then it is possible to transform Eq. (8) into a system of ordinary differential

equations by introducing appropriate new variables. Such a condition is satisfied, if an exponential approximation of

the Wagner’s function fðtÞ is used, given by Jones (1940)

fðtÞ ¼ 1 � a1e�e1t � a2e�e2t, (18)

where a1 ¼ 0:165, a2 ¼ 0:335, e1 ¼ 0:0455, and e2 ¼ 0:3. After introducing the vector of new variables

yðtÞ ¼

q1ðtÞ

q2ðtÞ

w1ðtÞ

w2ðtÞ

8>>>><
>>>>:

9>>>>=
>>>>;

, (19)

where

q1ðtÞ ¼ qðtÞ; q2ðtÞ ¼ _qðtÞ, (20)

wjðtÞ ¼ Aj

Z t

0

e�ej ðU=bÞtqðt � tÞdt ðj ¼ 1; 2Þ, (21)

the flutter equation, Eq. (8), takes the form of a set of 12 ordinary differential equations of the first order,

_yðtÞ ¼ CðUÞyðtÞ þ vyðyÞ, (22)

where dependence on the velocity (which acts as a bifurcation parameter) is expressed explicitly as a polynomial of the

third degree

CðUÞ ¼ C0 þ C1
U

b
þ C2

U

b

� 2

þ C3
U

b

� 3

(23)

and the structural nonlinearities are described by the vector vyðyÞ. All matrices, vectors and parameters appearing in

Eqs. (17), (21), and (23) are given in Appendix B.
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Limit cycles described by Eq. (22) can be calculated by using the continuation and bifurcation software AUTO97.

The AUTO97 software is mainly designated for performing a limited bifurcation analysis of algebraic systems and of

systems of ordinary differential equations of the form

_yðtÞ ¼ fðyðtÞ;UÞ,

where y and f are real vector functions and U denotes free parameter. For any given steady or periodic solution y0ðtÞ

corresponding to the fixed value of parameter U ¼ U0 the program can compute the stable and unstable branches of

solution yðtÞ for U4U0 by using the continuation method. For each step of the parameter U , the Floquet multipliers

are computed in order to determine stability along these branches. If a Hopf bifurcation occurs at certain point. the

program automatically generates starting data for the computation of periodic orbits (limit cycles). This feature of

AUTO97 software was extensively used in the present analysis of aeroelastic systems. In addition to a Hopf bifurcation,

the program can detect folds, branch points, period doubling bifurcations, and bifurcation to tori. Each new branch of

periodic solution is computed in a separate run of the program. At least two runs are required to compute one limit

cycle branch: first the Hopf bifurcation point must by located during continuation of the steady solution y ¼ 0, and

then the limit cycle branch can be computed. Since AUTO97 discretizes the boundary value problem for ordinary

differential equations by the method of orthogonal collocation using piecewise polynomials in each mesh interval, it

solves in each step a system of nonlinear algebraic equations. Moreover, because each step of the parameter U is small,

one-point Newton iteration is applied with initial solution taken from the previous step. The program is therefore fast,

but computing limit cycles by using the center manifold reduction is much faster.
4. Center manifold reduction—ordinary differential equations

If any bifurcation occurs in a dynamical system, then the phase space splits in general into three manifolds: stable—

generated by eigenvalues l with ReðlÞo0; unstable—generated by eigenvalues with ReðlÞ40; and center manifold,

corresponding to ReðlÞ ¼ 0 (Kelley, 1967). Center manifold is invariant, locally attracting and asymptotically stable.

Moreover, it is of finite dimension—for the Hopf bifurcation it is two dimensional. It means that in the space of all

solutions of Eq. (14) or Eq. (22), the bifurcating solution tends asymptotically to a two-dimensional attracting subspace.

The asymptotic solution (limit cycle oscillations) satisfies a certain system of two nonlinear ordinary differential

equations of the first order, which can be derived either from the integro-differential equation, Eq. (14), or from the

ordinary differential equation, Eq. (22), written for many degrees of freedom. The main advantage of using the center

manifold reduction is just a small number of variables describing an asymptotic motion.

In the simplest case of the ordinary differential equation, Eq. (22), the steady solution yðtÞ ¼ 0 is stable for U ¼ 0 and

all eigenvalues l of the matrix CðUÞ,

CðUÞŷ ¼ lŷ, (24)

are either real and negative or complex-conjugate with negative real parts. When the parameter U increases, it may

reach a certain critical value U0 at which a complex-conjugate, pure imaginary pair of eigenvalues appears

l1;2 ¼ �io0 (25)

with corresponding complex-conjugate eigenvectors

ŷ1;2 ¼ ŷre � iŷim, (26)

and the steady solution loses its stability and bifurcates asymptotically to the limit cycle oscillations contained in the

center manifold which is tangent to the linear subspace spanned by the real and imaginary parts of the eigenvectors ŷ1;2.

This phenomenon is known as the Hopf bifurcation. The value U0 is the critical flutter speed of a linear aeroelastic

system. However, there is one subtlety here: a locally attracting center manifold is defined at only a single point

U ¼ U0, at which the new oscillatory solution has still zero amplitude. For U4U0, the center manifold vanishes since

there are no more complex-conjugate imaginary eigenvalues. Consequently, it is impossible to work on an interval in

parameter space about U ¼ U0. To solve this problem, the center manifold reduction is applied to the so-called

suspended system obtained from Eq. (22) by considering the velocity a variable, not a parameter. Thus the number of

variables increases by one additional variable

u ¼ U � U0 (27)

and an additional equation for this variable is simply

_u ¼ 0. (28)
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The suspended system is then

_xðtÞ ¼ A0xðtÞ þ vxðxÞ, (29)

where

xðtÞ ¼
yðtÞ

u

� �
, (30)

A0 ¼
CðUÞ 0

0 0

� �
(31)

and the nonlinear vector vxðxÞ is easily obtained according to the foregoing. The center manifold for the suspended

system is three dimensional and the velocity u can now vary as a variable without affecting the existence of the center

manifold.

The center manifold reduction can be applied to Eq. (29) in a number of ways. The most effective is the method

described in details in Chow and Hale (1982), and briefly outlined below. It is always possible to rearrange the sequence

of variables and split the vector x into two vectors xc and xs

x ¼
xc

xs

( )

in such way that x3 ¼ u (x3 � xc3, the last component of the vector xc) and rewrite Eq. (29) accordingly in the form

_xcðtÞ ¼ AcxcðtÞ þ vcðxc; xsÞ,

_xsðtÞ ¼ AsxsðtÞ þ vsðxc; xsÞ, ð32Þ

where xc and xs are vectors of dimension nc, ns (nc þ ns ¼ M), respectively (for the particular case of Eq. (29), nc ¼ 3,

ns ¼ 10, M ¼ 13), and the nc 	 nc matrix Ac has two imaginary eigenvalues given by Eq. (25) and one zero eigenvalue.

In most cases, it is possible to diagonalize the matrix A0 and consequently also the matrices Ac and As. The real parts of

all eigenvalues of the matrix As are negative, so if the system were linear, the asymptotic motion would be described by

the equation

_xcðtÞ ¼ AcxcðtÞ,

because xs ! 0 as t ! 1. The idea of center manifold reduction is to find such transformation of coordinates x! f
(xc ! fc, xs ! fs) that retains the above property in the resulting equation for fc, and also makes that equation

invariant when fs ¼ 0. Such an equation will then describe the asymptotic motion in nonlinear case. To solve this

problem, two additional assumptions are necessary.

The first assumption is a very strong one, namely that there exists a formal power series representation of the

nonlinear vector vxðxÞ in Eq. (29)

vxðxÞ ¼
X
mX2

1

m!
Vmx

m, (33)

where

xm ¼ x
m1

1 � x
m2

2 � � � x
mM

M

�  
;
XM
j¼1

mj ¼ m; mjX0. (34)

The number of components of the vector xm and also the number of columns of each matrix Vm varies from one term to

another and equals the number cm;M of compositions of the number m into M parts

cm;M ¼
mþ M � 1

m� 1

 !
. (35)

It follows from Eq. (33) that also the nonlinear terms vc and vs have formal power series representations of the same

form.

The second assumption is that

Xnc

j¼1

lðcÞj mj � lðsÞk a0 (36)
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for k ¼ 1; 2; . . . ; ns and for each composition of m (mX2), where lðcÞj and lðsÞk are the eigenvalues of the matrices Ac and

As, respectively. This assumption is always satisfied (maybe except for certain very special cases, which must be treated

separately). Under the above assumptions, the differential equation (32) can be transformed into the following system

of equations in new coordinates f (fc, fs):

_fcðtÞ ¼ AcfcðtÞ þ ~vcðfc; fsÞ,

_fsðtÞ ¼ AsfsðtÞ þ ~vsðfc; fsÞ, ð37Þ

with

~vsðfc; 0Þ ¼ 0. (38)

The equation corresponding to fs ¼ 0:

_fcðtÞ ¼ AcfcðtÞ þ ~vcðfc; 0Þ (39)

is the final equation on the center manifold and describes the asymptotic motion. The transformation of variables

x! f is a near-identity transformation

xðtÞ ¼ fðtÞ þ
X
mX2

1

m!
Bmf

m
c ðtÞ, (40)

such that its nonlinear part depends only on the vector fc composed of the first nc coordinates of the vector f. The

matrices Bm can be calculated numerically in such way (Chow and Hale, 1982) that not only Eq. (38) is satisfied but in

addition Eq. (39) has a very special structure called normal form, and because of its rotational symmetry, in polar

coordinates r; y,

z1ðtÞ ¼ rðtÞeiyðtÞ; z2ðtÞ ¼ z̄1ðtÞ; z3 ¼ u, (41)

can be written as a partially uncoupled system of equations

_r ¼ r gðuÞ þ
X1
j¼1

ajðuÞr
2j

 !
, (42)

_y ¼ oðuÞ þ
X1
j¼1

bjðuÞr
2j , (43)

where gðuÞ � ioðuÞ is the pair of complex-conjugate eigenvalues (gð0Þ ¼ 0, oð0Þ ¼ o0). Eq. (42) does not depend on y, so

it can be solved separately. All functions gðuÞ, oðuÞ, ajðuÞ, bjðuÞ are real and have the form of power series expansions

with respect to u. In Chow and Hale (1982) there is also presented a detailed numerical algorithm for computing the

matrices Bm up to any order, so no tedious algebraic operations are necessary. In practical calculations, Eqs. (42) and

(43) are implemented up to some finite order nðjpnÞ. Therefore, the amplitude rH of the limit cycle oscillations satisfies

an algebraic equation obtained from Eq. (42) by setting _r ¼ 0:

gðuÞ þ
Xn

j¼1

ajðuÞr
2j
H ¼ 0. (44)

For any given u, the left-hand side of Eq. (44) is of the form of a polynomial in rH . Hence, all possible limit cycle

amplitudes are determined by the real positive roots of this polynomial. Since limit cycle oscillations z1 ¼ zH ðtÞ on the

center manifold are purely harmonic (Hassard et al., 1981),

zH ðtÞ ¼ rHeioH t, (45)

then for each amplitude rH the corresponding frequency oH is calculated from

oH ¼ oðuÞ þ
Xn

j¼1

bjðuÞr
2j
H . (46)
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The lowest order of variables Eq. (44) can be truncated to is two, which corresponds to n ¼ 1 and gives the amplitude

of the limit cycle

rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1

a1ð0Þ

dgð0Þ
du

u þ
1

2

d2gð0Þ
du2

u2

� s
. (47)

Note that the classical Hopf bifurcation theory (Hassard et al., 1981) gives a more simplified formula,

rH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1

a1ð0Þ

dgð0Þ
du

u

s
, (48)

which does not contain the term proportional to u2.
5. Center manifold reduction—integro-differential equations

The problem of existence of the center manifold when the velocity varies, described in the previous section, affects

also integro-differential equations. Therefore, instead of Eq. (14) the suspended system is used

_xðtÞ ¼ LxxðtÞ þ hðxÞ, (49)

where the vector xðtÞ is given by Eq. (30) in which the vector yðtÞ is that of Eq. (13). The linear integral operator Lx

corresponds to the linear flutter speed U0:

LxxðtÞ ¼ DxxðtÞ þ

Z 0

�1

Gxð�Y;U0Þxðt þYÞdY, (50)

where the nonlinear term is given by

hðxÞ ¼ kxðxÞ þ
X
mX2

1

ðm� 1Þ!

Z 0

�1

dm�1Gxð�Y;U0Þ

dUm�1
xmðt þYÞdY (51)

and

Dx ¼

0 I 0

�Kq �Bq 0

0 0 0

2
64

3
75,

Gxð�Y;UÞ ¼

0 0 0

rU3

2b
Gq �

U

b
Y

� 
0 0

0 0 0

2
664

3
775,

kxðxÞ ¼

0

kqðqÞ

0

8><
>:

9>=
>;. (52)

The series in Eq. (51) is the nonlinear part of the Taylor expansion of the matrix-function Gxð�Y;UÞ with respect to the

velocity U in the neighborhood of U0.

The procedure of center manifold reduction applied to the integro-differential equation, Eq. (49), described up to the

first order in Hassard et al. (1981) and also in details up to any order in Grzędziński (1993a), differs significantly from

that for ordinary differential equations. The reason is that the operator Lx maps the space C� of continuous functions

uðYÞ defined over the interval Y 2 ð�1; 0 onto the Euclidean space, and the eigenvalue problem Lxu ¼ lu cannot be

even posed directly, because each side of this equality belongs to a different space. Moreover, the problem is really of

infinite dimensions since the space of initial conditions is an infinite functional space. This is due to the influence of the

history of motion expressed by a convolution integral with infinite delay. The method of solving these problems is given

in Hale (1977) and Hassard et al. (1981) and is based on the extension of the operator Lx in order to map a space of
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continuous functions onto itself. The extended integral operator is

LuðYÞ ¼

duðYÞ

dY
; for �1oYo0;

Dxuð0Þ þ
R 0

�1
Gxð�t;U0ÞuðtÞdt for Y ¼ 0:

8><
>: (53)

After introducing the following notation:

xtðYÞ ¼ xðt þYÞ, (54)

the nonlinear flutter equation takes the form

_xtðYÞ ¼ LxtðYÞ þRxtðYÞ, (55)

where the nonlinear term is

RxtðYÞ ¼
0; for �1oYo0;

hðxtð0ÞÞ for Y ¼ 0:

(
(56)

First note that the time t is considered a parameter and Eq. (55) is written for unknown continuous function xtðYÞ of

the argument Y 2 ð�1; 0. For Y 2 ð�1; 0Þ Eq. (55) gives the obvious relation dxtðYÞ=dt ¼ dxtðYÞ=dY while for

Y ¼ 0 gives the flutter equation, Eq. (49). Note also that although the function xtðYÞ is continuous over the interval

ð�1; 0, the functions LxtðYÞ and RxtðYÞ may have a jump at Y ¼ 0, which means that actually both operators L and

R act from the space C� into a wider space.

At the bifurcation point (U ¼ U0), the operator L has a pure imaginary pair of eigenvalues �io0 plus one zero

eigenvalue, and the corresponding eigenvectors span a three-dimensional linear subspace Ec which is tangent to the

three-dimensional center manifold which in turn contains an asymptotic motion. The idea of center-manifold reduction

consists of splitting the vector xtðYÞ into two parts

xtðYÞ ¼ vðz1; z2; z3;YÞ þ wðt;YÞ (57)

in such way, that when the vector xtðYÞ remains on the center-manifold, the vector vðz1; z2; z3;YÞ belongs all the time to

the subspace Ec and depends only on three new variables z1ðtÞ, z2ðtÞ and z3ðtÞ being functions of time (z3ðtÞ � u). It

follows from the properties of the center manifold that the vector wðt;YÞ must satisfy the following conditions:

wðt;YÞ ¼ wðzðtÞ;YÞ; wð0;YÞ ¼ 0;
dwð0;YÞ

dz
¼ 0, (58)

where zðtÞ ¼ ½z1ðtÞ z2ðtÞ z3ðtÞ
T. The above conditions reflect invariant properties of the center manifold.

Both vectors v and w in Eq. (57) must be orthogonal in a certain sense, and obtaining the relation between them is the

essence of the method. The orthogonality is defined by the so-called outer product (Hassard et al., 1981)

hx�; xi ¼ x̄�Tð0Þxð0Þ �

Z 0

�1

Z Z

0

x̄�Tðx� ZÞGxð�Z;U0ÞxðxÞdxdZ, (59)

with two continuous functions xðxÞ and x�ðZÞ defined over intervals x 2 ð�1; 0 and Z 2 ½0;þ1Þ, respectively. The

adjoint operator L� is defined in a standard way by the relation hx�;Lxi ¼ hL�x�; xi. The eigenvalues and

eigenfunctions of two eigenproblems

Lu ¼ lu (60)

and

L�w ¼ l�w (61)

satisfy the equalities l� ¼ l̄, hwk;uli ¼ dkl . By using Eqs. (58) and (59) and assuming the following form of the vector

xtðYÞ

xtðYÞ ¼
X3

j¼1

zjðtÞujðYÞ þ wðzðtÞ;YÞ, (62)

the simple set of three nonlinear first-order ordinary differential equations describing asymptotic motion on the center

manifold is obtained

_z ¼ Kzþ W̄
T
ð0Þh0ðz;wðz; 0ÞÞ, (63)
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where ujðYÞ are the eigenfunctions of Eq. (60), the matrix W is composed of the corresponding eigenfunctions wjðYÞ

(Y ¼ 0; j ¼ 1; 2; 3) of Eq. (61), and K denotes the diagonal matrix of eigenvalues io0;�io0; 0. The vector wðz;YÞ

satisfies the integro-differential equation

_w�Lw ¼
�
P3

j¼1 w̄
T

j ð0Þh0ðz;wÞujðYÞ for �1oYo0;

�
P3

j¼1 w̄
T

j ð0Þh0ðz;wÞujð0Þ þ h0ðz;wÞ for Y ¼ 0:

8<
: (64)

Eqs. (62) and (63) are coupled by the right-hand size nonlinear term

h0ðz;wÞ ¼ h
X3

j¼1

zjðtÞujð0Þ þ wðz; 0Þ

 !
. (65)

The problem of obtaining the function wðz;YÞ from Eq. (64) and also determining the right-hand side of Eq. (63) is

solved under assumption that there exists a formal power series representation of the nonlinear vector hðxÞ in Eq. (49)

hðxÞ ¼
X
mX2

1

m!
Hmx

m. (66)

It can be shown that under this assumption Eq. (63) takes the form

_z ¼ Kzþ
X
mX2

1

m!
Dmx

m, (67)

where K denotes, as before, the diagonal matrix of eigenvalues io0;�io0; 0, and Dm are rectangular matrices composed

of the complex numbers calculated according to the algorithm of center manifold reduction described in Grzędziński

(1993a).

At this stage, the whole problem is reduced to that of transforming Eq. (67) to the normal form by using the near-

identity transformation given by Eq. (40), and then applying the procedure described at the end of the previous section

in order to find the limit cycle amplitude and frequency.

The most important feature of the algorithm of center manifold reduction (Grzędziński, 1993a) is that the impulsive

response matrix Gxð�t;UÞ does not appear in the algorithm explicitly but in the form of the integralsZ 0

�1

dlGxð�Y;U0Þ

dUl
YjesY dY ¼

qlþjAxðs;U0Þ

qUlqsj
, (68)

where lX0, jX0, and the only nonzero block of the matrix

Axðs;U0Þ ¼

0 0 0

Aðs;U0Þ 0 0

0 0 0

2
64

3
75

is the aerodynamic matrix given by the Laplace transform

Aðs;UÞ ¼
rU2

2

Z 1

0

GqðtÞe�ðsb=UÞt dt (69)

and calculated for the critical velocity U ¼ U0 and a pure harmonic motion (s ¼ �iko0, k ¼ 1; 2; . . .). For a three-

degree of freedom thin airfoil, the aerodynamic matrix is given in Appendix C (Theodorsen, 1935).

Eq. (68) does not only represent the formal equality but also the way of regularization of the improper integrals,

which do not exist in a common sense since the impulsive response matrix function decays too slowly with Y ! 1. In

addition, the algorithm of center manifold reduction is formulated as a pure numerical algorithm and does not require

any symbolic operations.

6. Results

The numerical values of system parameters used in calculations are listed in Table 1. They are essentially the same as

those of Conner et al. (1997), except for the damping and nonlinear spring model. The eigenfrequencies of the linearized

system (with free aileron rotation) equal 0, 4.55, and 9.93 Hz. There are three bifurcation points (flutter velocities) at

6.93, 10.13, 19.36 m/s, with corresponding frequencies of 4.26, 9.19, and 5.20 Hz. The lowest flutter velocity is taken as a

reference velocity U0.
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Fig. 3. Limit cycle amplitude in plunge.

Table 1

Values of parameters

Parameter Value

b 0:127 m

xa �0:5
xc 0:5
Ma 1:558 kg=m

Mw 3:3843 kg=m

xa 0:434

r2
a 0:536

xb 0:02

r2
b 0:013

oh 28:9378 rad=s

oa 52:7975 rad=s

ob 7:6758 	 10�5 rad=s

cb 391:6579 N

Ia 0:01347 kg m

Ib 0:0003264 kg m

zh 0:0008279

za 0:002588

zb 0:001830

r 1:225 kg=m3
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First, the limit cycles were calculated by using the AUTO97 software applied directly to the approximate system of

ordinary differential equations, Eq. (22), based on Jones’ approximation of Wagner’s function. The results are shown in

Figs. 3–8 (note that only limit cycles are shown). The amplitudes of oscillations in plunge, pitch, and aileron rotation

are shown in Figs. 3, 4, and 5, respectively. The values of the amplitude are defined as the highest absolute values

achieved during one cycle. Although such an amplitude is not the appropriate measure for solutions not being nearly

harmonic in time, as shown in Fig. 7 for time series in pitch, this measure seems to be satisfactory in this particular case

since the multiple peak solution lies far beyond any comparison with center manifold solutions. There are two different

branches, one of them connecting two different bifurcation points. The stable limit cycles are plotted with solid lines, as

that between points A and B, and also that passing to the right from the point C. The unstable limit cycle branches are

plotted with broken lines. The corresponding limit cycle frequencies are shown in Fig. 6. The time plots of the two

stable branches differ significantly, as shown in Figs. 7 and 8 (where T denotes the period of oscillations). The high

frequency limit cycle is nearly harmonic, while the low frequency limit cycle has more complex time history of pitch

oscillations.



ARTICLE IN PRESS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.5 1.0 1.5 2.0 2.5 3.0

|a
lp

ha
| [

de
g]

U/U0

A B

C

Fig. 4. Limit cycle amplitude in pitch.

0

1

2

3

4

5

0.0 0.5 1.0 1.5 2.0 2.5 3.0

|b
et

a|
 [d

eg
]

U/U0

A B
C

Fig. 5. Limit cycle amplitude in aileron rotation.

2

4

6

8

10

12

14

0.0 0.5 1.0 1.5 2.0 2.5 3.0

F
re

qu
en

cy
 [H

z]

U/U0

A B

C

Fig. 6. Limit cycle frequency.
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The method of center manifold reduction has been applied three times in order to calculate limit cycles in the

neighborhood of the three bifurcation points. All limit cycle solutions calculated this way constitute unstable branches.

The sequences of five plots of limit cycle amplitude corresponding to the first five terms (n ¼ 1; 2; . . . ; 5) in the series of
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Eq. (44), and corresponding to the lowest flutter velocity (6.93 m/s) are shown in Figs. 9–11. It can be seen that the

interval of velocity over which the results are acceptable is very small, and does not exceed 5% of the linear flutter

velocity. This is not enough to predict the stable limit cycle branch. Very similar behavior is observed in the

neighborhood of remaining two bifurcation points. The final comparison of limit cycle amplitudes calculated by using

the method of center manifold reduction (for n ¼ 3, because three-term expansion seems to give the best accuracy in this
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particular case, according to Figs. 9–11) with the stable branches given by a pure numerical method (AUTO97) is

shown in Figs. 12–14. The conclusion is straightforward—the method of center manifold reduction is not a proper tool

for that particular aeroelastic system.
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7. Two-dimensional airfoil: comments on certain results

A two-dimensional airfoil is the simplest and most frequently used nonlinear aeroelastic system when developing new

methods for limit cycle calculations.

The preliminary results assumed only a cubic structural nonlinearity in the pitch degree of freedom

Fa ¼ Caðaþ caa3Þ.

The amplitude of limit cycle oscillations of such system with ca ¼ 3, calculated by the method of center manifold

reduction applied to the integro-differential flutter equation (IDE), Eq. (14), is shown in Fig. 15. The remaining system

parameters are: Mw=prb2
¼ 100, xa ¼ �0:5, xa ¼ 0:25, ra ¼ 0:5, oh=oa ¼ 0:2. Such system was already investigated in

Grzędziński (1993b) (center manifold reduction) and Liu et al. (1999) (center manifold reduction combined with

perturbation technique). The sequence of five center manifold plots in Fig. 15 correspond to the first five terms

(n ¼ 1; 2; . . . ; 5) in the series of Eq. (44). Analogous plots calculated by the method of center manifold reduction applied

to the approximate set of ordinary differential flutter equations (ODE) based on Jones’ approximation of Wagner’s

function, Eq. (22), are shown in Fig. 16. Numerical results are those of AUTO97 software. The comparison of these

three approaches is shown in Fig. 17. Once again, the interval of velocities over which the results of the center manifold

reduction are acceptable is very small, and does not exceed 1% of the linear flutter velocity.

It is interesting and somewhat surprising that the simplest estimation of the limit cycle amplitude given by Eq. (48)

agrees very good with numerical result over a much wider interval of the velocities. The corresponding plot (denoted as

Hopf) is shown in Fig. 18. However, this agreement—deemed a very encouraging result of the center manifold

reduction—is misleading, because the amplitude is not the only parameter of the problem, and other parameters do not
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agree so well. In Fig. 19, the phase space section is shown of angular velocity in pitch versus pitch angle, corresponding

to the velocity ratio U=U0 ¼ 1:15. It is clearly visible that the phase plot corresponding to the simplified Hopf formula

is nonphysical since the airfoil rotates in the same direction while the angular velocity changes in its sign (at two plot

points of intersection with horizontal axis). Similar behavior is still visible (in much smaller scale, however) for the

velocity ratio U=U0 ¼ 1:02 (Fig. 20). Consequently, the interval of acceptable agreement once again does not exceed

approximately 1% of the linear flutter velocity.
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8. Conclusions

Although conceptually the method of center manifold reduction is very suitable for limit cycle calculations, it

suffers from the manner of its implementation based on formal power series expansions. These series often diverge

and behave like asymptotic series. Moreover, the area of applicability of such series cannot be predicted before

performing calculations. Therefore, in order to estimate this area it is necessary to calculate at least the first three terms

of the series.

There exist aeroelastic systems (as shown in this paper) for which the method of center manifold reduction does not

give even qualitatively acceptable results. In such cases the method of center manifold reduction can serve only as a tool

for preliminary local analysis. Generally, the method of center manifold reduction cannot be considered as a reliable

method for limit cycle calculations in nonlinear dynamical systems.
Appendix A. Matrices appearing in equations of motion

Mu ¼ Mab2

Mw

Mab2
�

xa

b
�

xb

b

�
xa

b
r2
a r2

b þ xbðxc � xaÞ

�
xb

b
r2
b þ xbðxc � xaÞ r2

b

2
6666664

3
7777775

,

Bu ¼

2Mwohzh 0 0

0 2Iaoaza 0

0 0 2Ibobzb

2
64

3
75,

Ku ¼ Mab2

Mwo2
h

Mab2
0 0

0 r2
ao

2
a 0

0 0 r2
bo

2
b

2
66664

3
77775.
Appendix B. Matrices appearing in approximate flutter equation

C0 ¼

0 I 0 0

�D�1
nc Kq �D�1

nc Bq 0 0

�
1

p
A1 0 0 0

�
1

p
A2 0 0 0

2
66666664

3
77777775
; C1 ¼

0 0 0 0

0 r̂D�1
nc P1 0 0

0 0 �e1I 0

0 0 0 �e2I

2
6664

3
7775,

C2 ¼

0 0 0 0

r̂D�1
nc P0 0 0 0

0 0 0 0

0 0 0 0

2
6664

3
7775; C3 ¼

0 0 0 0

0 0 �pr̂D�1
nc �pr̂D�1

nc

0 0 0 0

0 0 0 0

2
6664

3
7775,

vy yð Þ ¼

0

�D�1
nc kqðqÞ

0

0

8>>><
>>>:

9>>>=
>>>;

,
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Dnc ¼ I� r̂M̂nc,

P0 ¼ K̂nc þ 1 � a1 � a2ð ÞR̂s1 þ a1e1 þ a2e2ð ÞR̂s2,

P1 ¼ B̂nc þ 1 � a1 � a2ð ÞR̂s2,

Aj ¼ ajejR̂s1 � aje
2
j R̂s2 ðfor j ¼ 1; 2Þ

Mnc ¼

�p pxa T1

pxa �p x2
a þ

1

8

� 
�2T13

T1 �2T13
T3

p

2
666664

3
777775,

Bnc ¼

0 �p T4

0 p xa �
1

2

� 
�T16

0 �T17 �
T19

p

2
666664

3
777775,

Knc ¼

0 0 0

0 0 �T15

0 0 �
T18

p

2
6664

3
7775,

Rs1 ¼ R1S1; Rs2 ¼ R1S2,

R1 ¼ �2p 2p xa þ
1

2

� 
�T12

" #T

S1 ¼ 0 1
T10

p

� �
,

S2 ¼ 1
1

2
� xa

T11

2p

� �
;

the general matrix notation: Â ¼ Û
T
AÛ for any matrix A, where Û is the matrix composed of nondimensional

eigenmodes û ¼ ½�h=b a bT. Also, T1 to T19 are given by

T1 ¼ �1
3
ð2 þ x2

cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
þ xc arccos xc,

T3 ¼ �
1

8
ð1 � x2

cÞð5x2
c þ 4Þ þ

1

4
xcð7 þ 2x2

cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
arccos xc � x2

c þ
1

8

� 
ðarccos xcÞ

2,

T4 ¼ xc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
� arccos xc,

T5 ¼ �ð1 � x2
cÞ � ðarccos xcÞ

2
þ 2xc

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
arccos xc,

T7 ¼
1

8
xcð7 þ 2x2

cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
� x2

c þ
1

8

� 
arccos xc,

T8 ¼ 1
3
ð1 þ 2x2

cÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
þ xc arccos xc,
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T9 ¼
1

2

1

3
ð1 � x2

cÞ
3=2

þ xaT4

� �
,

T10 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
þ arccos xc,

T11 ¼ ð2 � xcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
þ ð1 � 2xcÞ arccos xc,

T12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � x2

c

q
ð2 þ xcÞ � ð2xc þ 1Þ arccos xc,

T13 ¼ �1
2
½T7 þ ðxc � xaÞT1,

T15 ¼ T4 þ T10,

T16 ¼ T1 � T8 � ðxc � xaÞT4 þ
1
2
T11,

T17 ¼ �2T9 � T1 þ xa �
1

2

� 
T4,

T18 ¼ T5 � T4T10,

T19 ¼ �1
2
T4T11,
Appendix C. Aerodynamic matrix

Aðs;UÞ ¼ rU2b2
ðM̂ncp2 þ B̂ncp þ K̂nc þ R̂s1CðpÞ þ R̂s2pCðpÞÞ,

where p ¼ sb=U , and

CðpÞ ¼
K1ðpÞ

K0ðpÞ þ K1ðpÞ

is the generalized Theodorsen function, with K0ðpÞ and K1ðpÞ being the modified Bessel functions.
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Grzędziński, J., 1993a. Calculation of coefficients of a power series approximation of a center manifold for nonlinear integro-

differential equations. Archives of Mechanics 45, 235–250.
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